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In Book III of his Harmonices Mundi Libri V, Kepler presents a theory of musical har-
mony that is exceptionally detailed, complex, and highly original. Notably, it makes 
a significant break from the approach offered by other theorists at the time. However, 
rather than sparking a new trend, Kepler’s theory remained an outlier. These consid-
erations compel us to inquire into why Kepler was drawn to this particular account 
of musical harmony. In this paper, I show that several philosophical considerations 
converged to lend support for his account: some stemming from Kepler’s broader 
theoretical framework, and others that function independently of it. Attending to 
these influences in Kepler’s theory of harmony is important for two main reasons. 
First, it clarifies its place within his broader philosophical program. Second, it pro-
vides a particularly interesting case of a philosopher in this period balancing internal 
consistency, empirical adequacy, and target precision in the formation of a highly 
original and complex account. Thus, it is important more broadly for understanding 
philosophical methodology and theory formation in the early modern period.
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1. Introduction

While Kepler’s interest in music likely comes as no surprise to scholars, his work 
on music theory is far from what he is most well-known for, especially when 
compared with his contributions to other domains like astronomy and optics. 
This is, in some sense, unsurprising. For one, although Kepler’s discoveries in 
astronomy and optics are recognized as having been of major importance for 
the subsequent development of these fields, his work on music is not similarly 
regarded. Kepler’s music theory, while strikingly complex and original, ulti-
mately failed to influence other thinkers in this area. Second, Kepler wrote rela-
tively little that is explicitly dedicated to music. So, while one can find references 
to musical concepts across his works, his explicit treatment of music theory is 
largely confined to his Harmonices Mundi Libri V. Finally, this work itself has his-
torically been seen as somewhat of a puzzle for Kepler scholars. It covers a col-
lection of topics— astrology, mathematics, and astronomy, in addition to music 
theory—that can seem befuddling to a contemporary reader. However, over the 
past several decades, a number of scholars have argued convincingly for the 
importance of the Harmonices Mundi within Kepler’s greater scientific program.1

My discussion here is meant to fit into this body of literature that takes 
Kepler’s Harmonices Mundi seriously. I will focus primarily on Kepler’s treat-
ment of musical harmony, offered in Book III of the work. Several scholars have 
noted the importance of music theory for the development of early modern sci-
ence in general,2 and others have commented specifically on the importance of 
musical harmony for Kepler’s work.3 However, there has not been a detailed 
examination of the theoretical considerations motivating Kepler’s development 
of his unique theory of musical harmony and how these considerations intersect 
with his broader scientific program. In existing discussions of Kepler’s music 
theory, his views are usually presented either in relation to his astronomy or 
as constituting a powerful explanation of harmony that was nevertheless made 
obsolete by subsequent developments in musical practice.4 In contrast, I propose 

1. For some notable examples, see Boner (2005), Escobar (2008), Field (1988), Martens (2000), 
Rothman (2017), Stephenson (1994), and Walker (1967). 

2. See Cohen (1984), Drake (1970), and Gouk (1999).
3. See Cohen 1984: Chapter 2; Pesic 2014: Ch. 5; Rothman (2017); Stephenson (1994); and 

Walker (1967). It is worth noting that Pesic has also written on Kepler’s connection to practical 
music (Pesic 2005), a topic that has received considerably less attention. My treatment here will be 
on Kepler’s account of speculative music and will not deal directly with his relationship to practi-
cal music due to space constraints.

4. For the former, see Stephenson (1994) and Walker (1967); for the latter see Cohen (1984). 
In Pesic (2005) and 2014: Ch. 5, Pesic provides details regarding Kepler’s musical background 
and interest in practical music as motivations for his theoretical views. Much of Pesic’s account is 
consistent with what I argue in this paper. My approach focuses more on how Kepler’s specula-
tive music theory was influenced by his philosophical views in metaphysics and epistemology, as 
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to show how factors specific to his theoretical system, as well as those largely 
independent of it, converged to inform his choice of music theory. Moreover, I 
will demonstrate how these two kinds of motivating factors interacted to pro-
vide significant support for elements of his broader philosophical and method-
ological views.

My contribution differs from existing accounts by specifically emphasizing 
how various distinct factors (and the directions from which they come) come 
together to constitute strong support for Kepler’s theory. In particular, my study 
departs from one of the seminal works on Kepler’s music theory, Walker (1967), 
and from other more contemporary accounts by clearly distinguishing the 
strands that converged to motivate Kepler’s views on music theory. I call atten-
tion to the way in which the success of his harmonic theory reflexively buttresses 
his overall philosophical framework, highlight how his approach to knowledge 
addresses enduring epistemological concerns, and show how he aims to meet 
those concerns in his theory of musical harmony. While Walker’s excellent paper 
addresses some of the points I raise below—such as Kepler’s emphasis on just 
intonation, the importance of his philosophy of mathematics for his theory of 
harmony, and the role of his theory of archetypes for his overall project—my 
account differs in its focus on the methodological issues pertaining to theoretical 
preference and choice mentioned above.

This study is of particular interest to philosophers for several reasons. First, 
it delves into music theory, an area of significant interest to philosophers of 
this period but one often overlooked in the history of philosophy scholarship. 
Second, it highlights the sophisticated and nuanced philosophical framework 
of a figure, Johannes Kepler, who is seldom discussed in the history of philoso-
phy literature. Finally, and more generally, it provides an interesting example of 
how competing philosophical considerations motivated theory formation and 
selection in a period where philosophical methodology was undergoing signifi-
cant change.

The paper will proceed as follows. The next section outlines background per-
tinent to the music theoretical debate on which I will focus. Following that, I give 
a breakdown of the details of Kepler’s geometrical music theory. I then argue 
that Kepler’s preference for this theory can be traced to several reasons, some of 
which derive directly from other features of his philosophical system, and while 
others are are largely independent of it. These former reasons will be addressed 
in Section 4. I argue that general features of Kepler’s epistemology, philosophy 
of mind, and philosophy of mathematics significantly informed the kind of 
music theory he proposed. In particular, I focus on connections to Kepler’s epis-

well as with broader methodological concerns not directly tied to his philosophical system; in this 
sense, it compliments the points Pesic raises regarding Kepler’s background in practical music.
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temology by showing how Kepler’s solution to certain epistemological concerns 
is exemplified by his music theory. In Section 5, I turn to reasons that are largely 
independent of the particulars of Kepler’s theoretical system. I discuss how his 
account exhibits a high degree of explanatory power when compared to rival 
theories of the time, and I argue that this, in turn, provides further support for 
his broader, geometrically grounded philosophical framework.

2. Musical Consonance

In order to discuss Kepler’s theory of musical harmony, it will be helpful to 
provide some background. The first thing to note is that music was historically 
considered a part of the quadrivium (i.e., the portion of the seven liberal arts deal-
ing with number and quantity), alongside arithmetic, geometry, and astrono-
my.5 As such, during Kepler’s time, music theory was considered a subject of 
inquiry within the mathematical sciences. One particularly pressing question in 
this domain had to do with the property of musical consonance—the element 
of Kepler’s music theory on which this paper primarily focuses. I understand 
musical consonance as a property possessed by certain musical intervals (i.e., two 
pitches sounding simultaneously) in virtue of which they are perceived as pleas-
ant, smooth, or agreeable.6 Its contrast, musical dissonance, is possessed by cer-
tain musical intervals perceived as unpleasant, harsh, or disagreeable. A couple 
notes on these definitions are in order.7

5. As Reiger notes, the structure of Kepler’s Harmonices Mundi is based loosely on the qua-
drivium, with the first two books dealing with geometry, the third book dealing with music theory, 
and the fifth book dealing with astronomy. Of course, the addition of astrology in Book IV does 
not fall within the traditional quadrivium (Regier 2016: 217–218).

6. The reader will note that I explicitly refer to pitches sounding simultaneously (i.e., har-
monic intervals) rather than successively (i.e., melodic intervals). Not much hangs on this distinc-
tion, but it is worth noting that several historical factors prompted the emphasis on harmonic 
intervals during this period. For a more detailed discussion, see Tenney (1988).

7. Variations on these definitions appear throughout historical treatises on music theory. For 
instance, Boethius writes in his De institutione musica, “Consonance is a mixture of high and low 
sound falling pleasantly and uniformly on the ears. Dissonance, on the other hand, is a harsh and 
unpleasant percussion of two sounds coming to the ear intermingled with each other” (Boethius, 
De institutione musica, I.8 in Bower 1989: 16). Kepler writes, “[Souls] take joy in the harmonic pro-
portions in musical notes which they perceive, and grieve at those which are not harmonic. From 
these feelings of the soul the former (the harmonic) are entitled consonances, and the latter (those 
which are not harmonic) discords” (Kepler, GW vi, 105/ADF, 147). For references to Kepler’s 
works, I use the following abbreviations: GW for Gesammelte Werke, ed. Max Caspar, Munich 1940; 
and ADF for The Harmony of the World, trans. E.J. Aiton, A.M. Duncan, & J.V. Field, American 
Philosophical Society, Philadelphia 1997. Finally, Mersenne writes, “When two or more sounds 
are made together and at the same time, we call them ‘consonant’ when they attune well, and 
when they please the ear and the spirit” (Harmonie Universelle, Abstract of Music Theory, transla-
tion mine).
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First, while one might expect considerable disagreement about which inter-
vals are consonant, there was in fact broad consensus in this period. Of course, 
there were debates about the status and relative consonance of specific intervals,8 
but there was nonetheless a striking level of agreement about which intervals were 
included in the consonant class.9 Second, both consonant or dissonant intervals 
can be represented by mathematical ratios capturing the relationship between 
the pitches that form the interval. This had been recognized since antiquity—its 
discovery is most often attributed to Pythagoras—and is part of the reason for 
music’s inclusion in the quadrivium. According to contemporary understanding, 
these ratios reflect the proportion between the fundamental frequencies of the 
pitches in question. However, prior to the discovery of sound waves, they were 
understood primarily in terms of the proportion between lengths of string pro-
ducing these pitches.

The musical intervals that concerned Kepler were those comprising the 
musical scale under just intonation, the preferred system for dividing the octave 
in this period.10 According to this system, the consonant intervals are the octave 
(2:1), fifth (3:2), fourth (4:3), major and minor thirds (5:4 and 6:5), and major and 
minor sixths (5:3 and 8:5). I will refer to these as the “fundamental” consonant 
intervals, since they all occur within the span of a single octave. As we will see, 
these intervals have octave doubles that Kepler also considered consonant.11 

8. For instance, there was considerable debate as to whether the unison counted as an interval 
at all, and also as to the relative consonance of the perfect fourth compared to the major third.

9. We might think that this consensus is due to context and listener acculturation—primarily 
early modern Western Europeans. While that may be a factor, it is also worth noting that debates 
about the objectivity of consonance continue today and the consonance/dissonance distinction is 
still in use. The intervals included in each class remains relatively unchanged since the seventeenth 
century. Some evidence also suggests agreement across cultures on which intervals are consonant, 
at least when considered in isolation. For instance, see Bidelman & Krishnan (2009), Bowling et al. 
(2017), Deutsch (1999), Kameoka & Kuriyagawa (1969), Krumhansl (1990), Trainor & Heinmiller 
(1998), and Zentner & Kagan (1998).

10. Just intonation, as opposed to the earlier Pythagorean intonation, became the domi-
nant mode of assigning pitch relationships in Renaissance music theory, due to the popularity of 
polyphony styles requiring consonant thirds and sixths. However, its difficulties when applied to 
fixed-pitch instruments—accompanied by the rise in compositions featuring modulations to more 
distant keys—eventually led to its being superseded. While just intonation remained the predomi-
nant method of assigning pitch relationships throughout Kepler’s time, it was contested as early 
as the late sixteenth century (notably, in debates between Gioseffo Zarlino and Vincenzo Galilei 
over which intervallic distances unaccompanied voices would naturally favor). Kepler favors the 
view that the intervals of just intonation are supported both empirically, by the judgment of the 
ears, and mathematically (GW vi: 99–101/ADF: 137–140). For further discussion of this point, see 
Sections 4 and 5 below. For a detailed discussion of just intonation and methods of dividing the 
octave, see Lindley (2001a, 2001b). For discussion of Kepler’s preference for just intonation in this 
context, see Pesic 2014: Ch. 5 and Walker (1967). 

11. There was a general consensus amongst music theorists at this time that “octave doubles” 
preserve the consonance of their “fundamental” counterparts.
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One of the primary questions about consonance at the time was why only these 
intervals were consonant. It is important to note that this question was viewed 
as one dealing with mind-independent, natural phenomena. So, while some con-
temporary readers might be inclined to confine such questions within a separate 
“aesthetic” domain, theorists in Kepler’s period treated explanations of conso-
nance much like explanations of other properties such as color or heaviness.12

Prior to Kepler, the most popular way of explaining consonance was to posit 
a special “nature” belonging to the numbers composing the ratios of the conso-
nant intervals. There were many variations on this kind of account, and I will 
refer to them collectively as numerical theories. Another approach, known as coin-
cidence theory,13 stipulated that sound reduces to motion and that consonance can 
be explained by appealing to the physical interactions of these motions.14 I will 
discuss both numerical theories and coincidence theory in more detail in Section 
5, where I compare them with Kepler’s preferred, geometry-based theory.15 The 
central question in this paper is why Kepler chose his geometrical theory, rejecting 
other, more widely accepted alternatives that were available to him at the time. 
In the next section, I provide a summary of Kepler’s geometrical theory before 
turning to what motivated his choice.

3. Kepler’s Geometrical Theory of Consonance

Kepler’s theory holds that musical consonance is explained by a privileged set of 
regular polygons. The foundation for this view can be found in Axiom I of Chap-
ter 1 of Book III of his Harmonices Mundi, where Kepler writes, “the diameter of a 
circle, and the sides of the fundamental figures expounded in Book I, which have 
a proper construction, mark off a part of the circle which is consonant with the 
whole circle” (GW vi: 102/ADF: 144). The figures “with a proper construction” 
to which Kepler alludes are those that he demonstrates can be inscribed in a 

12. It is also important to note that Kepler, among others in this period, did not make a strict 
distinction between “scientific” and “aesthetic” domains. For discussion of this point in Kepler, 
see Martens (2000).

13. This term was coined by Cohen (1984).
14. Modern readers may be reminded of the interaction of sound waves but, as mentioned 

above, debates between theories in this period predate their discovery. Adherents of coincidence 
theory maintain that sound is composed of discrete percussions or pulses of air—a view that antic-
ipates our modern understanding of sound waves but differs in its description of sound’s physical 
characteristics.

15. I will refrain from discussing these theories in detail until after I have presented Kepler’s 
own theory. I do this in service of emphasizing the methodological points that this paper aims 
to establish: namely, how Kepler was motivated both by concerns particular to his philosophical 
system and those shared by other theorists.
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circle by means of a traditional geometric tools—namely, a ruler and compass—
in Book I of the Harmonices Mundi: the equilateral trigon, the tetragon, and the 
pentagon.16

When inscribed within a circle, these figures “cut off” sections of the circum-
ference where their vertices meet it. Kepler explains the significance of the circle, 
writing, “it is sufficient that a string stretched out straight can be divided in the 
same way as when it is bent round into a circle it is divided by the side of the 
inscribed figure” (GW vi: 102/ADF: 144). Thus, the circle represents a string, and 
the vertices of the inscribed figures indicate the points of its division. Compar-
ing the whole circumference of the circle with the portion cut off by a side (or 
sides) of the constructible figures yields the ratios of the consonances.17 From 
the collection of figures outlined above, we can generate the following conso-
nances: from the diameter, the octave (2:1); from the trigon, the fifth (3:2); from 
the tetragon, the fourth (4:3); and from the pentagon, the major third (5:4) and 
major sixth (5:3).

It also should be noted that any proportion of side or sides to the circle’s 
entire circumference generated by these figures will be consonant. For instance, 
in the trigon’s case, in addition to the 3:2 ratio of the perfect fifth, we can derive 
3:1 from the whole circumference compared with the portion cut off by one side. 
Although 3:1 is not among the fundamental consonances outlined above, it is still 
counts as a consonance because it expresses a fifth plus octave.18 Finally, Kepler 
points out that comparing portions of the circumference cut off by sides of these 
figures to each other will also yield consonant intervals.19 For instance, if we take 
the pentagon and compare the section cut off by one side to the remainder of the 
circumference, we get 4:1, which expresses the consonant double octave. Simi-
larly, if we take the portion cut off by two sides of the pentagon and compare it 
to what remains, we get the 3:2 ratio of the perfect fifth.

16. The pentecaidecagon, or 15-sided polygon, is also constructible, but Kepler excludes it 
as a basis for consonance because its construction relies on the trigon and pentagon. On Kepler’s 
rejection of the pentecaidecagon, see Walker (1967), 241–242. 

17. For example, we can take the trigon, which generates the perfect fifth. The circumference 
is divided into three parts by the trigon’s vertices, and we compare the entire circle with the por-
tion defined by two sides, producing the 3:2 proportion of the fifth.

18. “Strings in the proportion of successive doubling are in identical consonance with each 
other, but those in more distant proportion are in consonance at a more remote degree” (GW vi: 
110/ADF: 153).

19. According to most theorists, any consonant interval smaller than an octave remains con-
sonant when an octave (or octaves) is added. Kepler explicitly describes how an interval retains 
its consonance through “octave doubling” in Proposition III of Chapter 1 in Book III: “… If a 
remainder is in the same proportion to a cut off part as the whole circle is to a consonant part, it 
is also in consonance with the cut off part… If it is in the same proportion to it as the whole is to 
some dissonant part, it will be in dissonance both with the cut off part and with the whole” (GW 
vi: 113/ADF: 156). 
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Now, the reader may notice that this set of figures does not generate two 
fundamental consonances: the minor third (6:5) and the minor sixth (8:5). 
Indeed, neither can be generated by the constructible figures listed above. Kepler 
accounts for these by noting that figures with double or half the number of sides 
of the primary constructible polygons also have a “proper construction” and 
thus give rise to consonances. This explanation accounts for both the minor third 
and the minor sixth: the minor third (6:5) is generated by the figure possessing 
twice the number of sides as the trigon (i.e., the hexagon), and the minor sixth 
(8:5) by the figure possessing twice the number of sides as the tetragon (i.e., the 
octagon). Hence, while there is a basic set of constructible polygons, they can be 
multiplied infinitely by doubling their sides. Similarly, while the basic conso-
nances are confined to the finite collection noted above, one can continue adding 
octaves above and below them ad infinitum, and they remain consonant (GW vi: 
22 & 102/ADF: 19 & 144).20

Kepler’s account thus provides us with a method for identifying all of con-
sonances: every consonant interval must be derived from inscribing a construct-
ible figure in the circle. One might ask, however, if his account is sufficient, that 
is, whether it provides a criterion for identifying only consonant intervals. This 
is where Kepler seems to run into trouble. Allowing an infinite number of con-
structible figures permitted by repeatedly doubling their sides seems to open 
up the possibility of generating arcs of the circumference that are not consonant 
with the whole (or with each other). Take, for instance, the octagon. By accept-
ing this figure, we can generate the minor sixth (8:5), yet it seems like we also get 
ratios like 7:1 and 7:8, both of which were decidedly dissonant.

Kepler offers a method of ruling out such cases. He tells us, “the sides of the 
regular… figures which are not constructible mark off a part of the circle which 
is dissonant from the whole circle” (GW vi: 103/ADF: 144–145). Any propor-
tions involving the number of sides of such non-constructible figures count as 
dissonant, even if they lie within the proportions generated by a constructible 
figure. Take 7:1, for instance: although one can generate it through the octagon, 
the ratio involves the number seven, and the heptagon is not a constructible 
figure. Thus, any interval deriving from it is disallowed.21 To substantiate this 
prohibition, Kepler goes to great lengths showing that no figures with a prime 

20. See also GW vi: 113/ADF: 157 for a table capturing the sequence of consonances through 
octave doubling.

21. For discussion of this point and Kepler’s reasons for rejecting the heptagon as construct-
ible, see Pesic (2000). Pesic contends that Kepler’s musical concerns significantly motivated his 
rejection of the constructability of the heptagon, in particular, and algebraic methods more gener-
ally. I agree with Pesic on this point but would add that Kepler’s broader epistemological views 
on knowability and infinity also informed this verdict. As with his music theory, I believe that 
multiple converging considerations factored into Kepler’s view in this regard.
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number of sides larger than five can be constructed with ruler and compass.22 
Convinced he had secured that demonstration, we can see why Kepler believed 
he had provided necessary and sufficient conditions for consonance. If polygons 
lacking a proper construction were indeed disqualified, then the proportions 
they generate would be disqualified, leaving intact only the fundamental conso-
nances or one of their octave doubles.

In this section, I have outlined the primary features of Kepler’s theory of 
musical consonance. He claims that consonant intervals result from dividing a 
circle by the constructible polygons inscribed within it. This criterion is intended 
to capture all and only the consonant intervals, since any ratio involving the 
number of sides of any non-constructible polygons is ruled out. While this seems 
to account for consonance, we are justified in asking why Kepler was compelled 
to develop such an account, especially given that other seemingly “simpler” or 
more popular theories were readily available to him. In the sections that follow, 
I examine the converging reasons that motivated Kepler’s theory.

4. The Geometrical Theory of Consonance Within Kepler’s 
Framework

The first motivating factor internal to Kepler’s framework concerns the status of 
geometrical objects in his philosophy of mathematics. As others have noted,23 
Kepler believed that quantification is a requirement for knowledge, and that 
geometrical quantification is privileged over numerical quantification because 
geometrical objects are metaphysically and epistemologically more fundamen-
tal.24 In Book IV of Harmonices Mundi, Kepler writes:

‘On numbers, indeed, I should not contest the view that Aristotle rightly 
refuted the Pythagoreans; for the numbers are at a second remove, in 

22. See Proposition XLV in Book 1 of Harmonices Mundi (GW vi: 47–56/ADF: 60–79). Unfortu-
nately, Kepler was proven wrong on this point by Gauss centuries later.

23. See Barker (1997), Claessens (2011), Escobar (2008), Gal & Chen-Morris (2012), Field 
(1988), Jardine (1984), and Regier (2013).

24. Kepler stresses the importance of quantification for knowledge throughout his career. 
For instance, in his De quantatibus, he states that, “the very nature of the human understanding 
itself… seems to be such, by the law of creation, that it cannot know anything perfectly but quanti-
ties or by means of quantities” (GW viii: 148/Cifoletti 1986: 224). In this work, he does not sharply 
distinguish between geometrical and numerical quantification, but in most other works he does. 
For instance, in his Apologia pro Tychonis contra Ursum, he writes, “those who contemplated things 
immediately discerned in geometrical figures and numbers, that is, in the business which is of all 
nature the clearest and most completely fitted to the human mind, that illumination of our mind… 
most especially thrives on geometrical figures” (Kepler, Apolgia, in Jardine 1984: 138). Escobar 
(2008: 17–22) also notes this point.
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a sense, or even at third, and fourth… and they have in them nothing 
which they have not got either from quantities, or from other true and 
real entities…’ (GW vi: 222/ADF: 302).

Numbers have a kind of derivative reality for Kepler in that they depend the 
things being numbered, whatever these may be. Once there are entities, the mind 
can abstract numbers from their collections. By contrast, geometrical quantities 
have a more fundamental existence. Kepler emphasizes this point in the intro-
duction to Book III of Harmonices Mundi:

‘… the theorist… knows that the numbers 1, 2, 3 are symbols of the basic 
principles of which natural things consist. For an interval is not a natural 
thing, but a geometrical one. Hence unless these numbers number some-
thing else, which is more akin to the intervals, the philosopher will not be 
able to put any confidence in this cause but will suspect it of not being a 
cause’ (GW vi: 100/ADF: 139).

So, while the terms of the intervallic ratios are numbers, these ratios must be 
grounded in something more real.

In addition to his conviction that geometrical objects are more fundamental 
than numbers, Kepler thought that consonance specifically must be explained in 
terms of geometrical objects because both geometrical objects and sounds share 
the property of being continuous rather than discrete. He makes this point in 
numerous places. For instance, in the introduction to Book III, he states: ‘since 
the terms of the consonant intervals are continuous quantities, the causes which 
set them apart from the discords must also be sought among the family of con-
tinuous quantities, not among abstract numbers, that is in discrete quantity’ (GW 
vi: 100/ADF: 139). It is not entirely clear to commentators what exactly Kepler 
means by this claim. It seems that the “terms” he references are the pitches of the 
interval, so he is claiming that pitches are continuous, not discrete, quantities. 
However, as Walker points out, Kepler was aware that sound could be under-
stood as a series of pulses or percussions, implying that it could be understood 
as composed of discrete, countable units (Walker 1967: 236).25 Cohen suggests 
instead that Kepler is referring to the fact that “sound is a continuous phenome-
non, in that every single point of a string defines a different pitch…” (Cohen 1984: 
17). In this sense, Kepler would be referring to pitch as a continuous spectrum.

As these points have been discussed thoroughly by other commentators, I 
will not belabor them further. Instead, I would like to turn to a connection with 

25. Kepler’s knowledge that sound could be understood as a series of motions in a medium 
is discussed further in Section 5, where his preferred geometrical theory is compared with coinci-
dence theory.
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Kepler’s broader epistemology that has attracted less attention in this context. 
Kepler believed that knowledge acquisition is achievable only through a process 
of delimitation or measurement. He makes this general point in the Introduction 
to Book I of the Harmonices Mundi, writing,

‘For shape and proportion are properties of quantities, shape of indi-
vidual quantities and proportion of quantities in combination. Shape is 
demarcated by limits, for it is by points that a straight line, by lines that 
a plane surface, by surfaces that a solid is bounded, circumscribed, and 
shaped. Therefore finite things which are circumscribed and shaped can 
also be grasped by the mind: infinite and unbounded things, insofar as 
they are such, can be held in by no bonds of knowledge, which is obtained 
from definitions, by no bonds of constructions’ (GW vi: 15/ADF: 9).

There are a couple of things to note here. First, Kepler expresses the view that to 
know something is to impose some kind of structure on it or to mark its bound-
aries. For instance, in giving a definition, we identify what a thing is while simul-
taneously distinguishing it from what it is not, effectively placing a boundary 
on it.26 This emphasis on the activity of knowing stresses what is required of the 
knower. Yet Kepler also acknowledges conditions for the object to be known: it 
must possess certain limits or boundaries that the knower can recognize.

Later in Book I, Kepler explicitly states how this account of knowledge acqui-
sition applies to geometry, and he believes that it generalizes to other domains 
of knowledge as well:

Definition VII: ‘In geometrical matters, to know is to measure by a known 
measure, which known measure in our present concern, the inscription 
of Figures in a circle, is the diameter of the circle.’
Definition VIII: ‘A quantity is said to be knowable if it is either itself imme-
diately measurable by the diameter… or by its [the diameter’s] square…
or the quantity in question is at least formed from quantities such that 
by some definite geometrical connection, in some series [of operations] 
however long, they at last depend upon the diameter or its square’ (GW 
vi 21–22/ADF 18–19).

In these passages, Kepler makes two key points. First, acquiring knowledge is a 
process of imposing a kind of structure on the world. Here, Kepler applies this 
principle to geometrical objects by saying that geometrical knowledge is gained 

26. The Greek word for “definition” in Euclid’s Elements, ὅρος, can also be translated as “cir-
cumspection” or “boundary.” 
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through measurement and construction based on the diameter of a given circle. 
Second, the world must be a certain way for us to be able to engage in this pro-
cess at all; that is, geometrical objects must possess measurable characteristics. 
This recognition addresses two related, fundamental epistemological questions: 
(1) What must the knower do in order to know? and (2) How must the world be 
for that process to succeed? Kepler answers by asserting that the world is com-
posed of limited, measurable entities that the mind can apprehend through geo-
metrical reasoning. We confirm our knowledge by recognizing that it has been 
acquired through the proper procedure applied to the right kind of objects.27

This is important for two reasons. First, it contextualizes Kepler’s views on 
the status of geometrical objects vis-à-vis numbers, as discussed at the beginning 
of the section. If we are to have knowledge about the world, we must engage in 
a process of delimitation and measurement that applies to real entities with the 
right kind of limits. Numbers, as mere abstractions, may be useful, but cannot be 
considered as the ultimate foundation for knowledge. Second, this point brings 
us back to Kepler’s geometrical account of consonance. As expressed in Kepler’s 
definitions of geometrical knowledge, knowledge acquisition involves measure-
ment according to a given measure. However, it is of the utmost importance that 
we identify the correct measure. For Kepler, this is the circle and its diameter—a 
principle that holds not only for geometry but also for knowledge more generally.

Of course, this raises further questions. Why the circle? And how can it 
provide knowledge of things besides geometry? In the case of consonance, the 
circle serves as a representation of the string. More broadly, however, it is fun-
damental to Kepler’s metaphysics, epistemology, and philosophy of mind. Its 
importance stems from Kepler’s broader theory of archetypes, according to 
which God designs the world using certain formal, geometrical principles or 
archetypes. These archetypes function metaphysically as a principle of design in 
nature, pervading the universe and playing a fundamental role in all of God’s 
creation. Moreover, since the human mind reflects God’s mind, these archetypes 

27. The epistemological emphasis Kepler places on limitation, and its relation to his ontologi-
cal claim that the world contains knowable entities, recurs throughout the Harmonices Mundi. Later 
in Book V, discussing the presence of harmonic proportions in the heavens, he writes:

‘… As matter is diffuse and unlimited in itself, but form is limited, unified, and 
itself the boundary of matter; so also the number of geometrical proportions is infi-
nite, the harmonies are few… The harmonic proportions are all expressible, and the 
terms of them are commensurable… Infinite divisibility signifies matter, but com-
mensurability or expressibility of term signifies form. Therefore, as matter strives 
for form… so geometrical proportions in the figures strive for harmonies…’ (GW vi: 
360–361/ADF: 488–489).

Here, Kepler emphasizes the relative perfection and completeness of limited harmonies com-
pared with unlimited or infinitely divisible matter, and the corresponding epistemic point that the 
former are knowable while the latter is not. 
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also reside within us and play an important epistemic role by enabling various 
kinds of knowledge acquisition.28

While Kepler’s theory of archetypes plays an important role throughout his 
work, its relevance for our discussion concerns the role of the circle. In numerous 
places, Kepler states that the circle exists in our minds as an archetype, provid-
ing the basis for recognizing harmonic proportions. For instance, in Part IV of 
Harmonices Mundi, Kepler writes:

‘I shall adduce the affinity… of these souls, even the inferior ones, with 
the circle, in accordance with which, as with a rule or law, they have been 
arranged and shaped, while along with the circle and its constructabil-
ity, they have also taken on the idea of the harmonic proportions which 
depend on it’ (GW vi 226/ADF 308).

This view emerges from Kepler’s understanding of how God’s divine light ema-
nates in a sphere, which is then intersected by a plane. The plane corresponds to 
the body or corporeal form, while the circle formed by that intersection becomes 
“a true image of the created mind” (GW vi 224/ADF 305).29

The archetype of the circle is especially important for constructing what 
Kepler calls “archetypal harmonies,” relations based on these geometrical arche-
types innate to the mind and used to make sense of the external world.30 Arche-
typal harmonies, like all harmonies, require a pair of terms, which for Kepler 
“are the complete circle and an aliquot part or parts of it, which are constructible 
by division of the arc” (GW vi 216/ADF 295). These archetypal harmonies allow 
us to recognize harmony in sensible things, since “to find the appropriate pro-
portion in sensible things is to uncover and recognize and bring to light a simi-
larity of that proportion in sensible things to some particular archetype of the 
truest harmony which is within the soul” (GW vi 215/ADF 294–295). As we have 
seen above, Kepler insists that the terms of archetypal harmonies exist a priori in 

28. The most famous example of Kepler’s theory of archetypes is his “polyhedral hypoth-
esis,” which he outlines in the Mysterium Cosmographicum. According to this view, the sphere and 
the Platonic solids serve as the archetypal principles for God’s creation of the solar system, deter-
mining the number and spacing of the planets through inscribed and circumscribed spheres of the 
nested Platonic solids (GW i: 23–27).

29. This view makes an appearance in Kepler’s other works as well, such as the opening of his 
Ad Vitellionem paralipomena (GW ii: 6–7/Donahue 2000: 19–20). Kepler was heavily influenced by 
Plato’s Timaeus (referenced frequently throughout the Harmonices Mundi) and by the neo-Platonic 
works of Proclus (which he discusses favorably in numerous places—see, for instance, his lengthy 
quotation of Proclus’ commentary on Euclid’s Elements in Book IV: GW vi: 218–221/ADF: 298–301). 
For a discussion of Proclus’ influence on Kepler and how Kepler departed from Proclus’ views, 
see Regier (2016).

30. For discussion of archetypal harmony in Kepler’s epistemology, see Jardine (1984): Ch. 7 
and Escobar (2008): 29–38.
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the soul (i.e., they are not mere abstractions from experience). These archetypes 
are fundamental to the mind and provide us with the means of comprehending 
sensible things. He puts it as follows:

‘… The terms of the sensible harmonies are sensible, and must be pres-
ent outside the soul: the terms of the archetypal harmonies are present 
within the soul beforehand… Another comparison is also needed of the 
individual sensible terms with the individual archetypal ones, I mean 
with the circle and a knowable part of it; but the archetypal harmony has 
neither need, as its terms are present in the soul beforehand, and inborn 
in it, and in fact are the soul itself, and they are not an image of their true 
pattern, but are in a sense their own pattern’ (GW vi 225/ADF 305–306).

Thus, the circle serves as an innate measure of sensible things, giving us the 
means to acquire knowledge about them. In the case of musical consonance, 
this innate archetypal harmony underlies our comprehension of the consonant 
intervals. These intervals owe their pleasant character to their grounding in con-
structible plane figures inscribed in the circle, which is not only a representation 
of a vibrating string but also corresponds directly to the terms of the archetypal 
harmonies within the soul.31

Of course, many questions remain about Kepler’s epistemology and philoso-
phy of mind32 —for instance, the motivation and legitimacy behind making the 
circle and its constructible arcs the basis for the archetypal harmonies.33 How-

31. The recognition enabled by the archetypal harmonies is not limited to the perception of 
musical consonance (though Kepler thinks this case is especially representative—see GW vi: 216/
ADF: 295 and GW vi: 232/ADF: 315). He also points out that archetypal harmonies underlie per-
ceptions of beauty in the visual domain and some emotional responses. For instance, Kepler writes 
that love or hatred of another person occurs through “judging the goodness of another soul, or 
its resemblance to one’s own, by the symmetry of the parts of the body and the qualities of voice 
and temperament” (GW vi: 227/ADF: 309; for further comments of the role of the harmonies in our 
emotional lives, see GW vi: 236–237/ADF: 321–322). In this sense, archetypal harmonies are impor-
tant not only for reflective knowledge or rational explanation but also for shaping perception and 
experience more generally. Kepler makes it clear that non-human animals and other living things 
recognize archetypal harmony “instinctually”: “The ideas or formal causes of the harmonies… are 
completely innate in those who possess this power of recognition; but the are not after all taken 
within them by contemplation, but rather depend on a natural instinct, and are innate in them, as 
the number… of the leaves in the flower and of the segments in a fruit are innate in the forms of 
plants” (GW vi: 226/ADF: 307–308). 

32. For a more detailed discussion of Kepler’s views in these domains, see Barker (1997), 
Boner (2005), Claessens (2011), Escobar (2008), Jardine (1984), and Regier (2013).

33. For instance, Field remarks “…Kepler regarded the property of being knowable as a cri-
terion of nobility, indicating the closeness of a figure’s relation to the circle, and thus its fitness to 
contribute to the archetype, but… it is rather difficult to convince oneself that he is not putting 
arbitrary limits to God’s powers by restricting Him to using only a straight edge and compasses” 
(Field 1988: 122). 
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ever, elaborating further on these issues is beyond the scope of the discussion 
in this section. I introduce Kepler’s views here to show that broader theoreti-
cal commitments constrained the kinds of theories he could construct. In par-
ticular, I have tried to emphasize that these commitments connect to concerns 
about knowledge acquisition and confirmation. This, in turn, is part of Kepler’s 
broader epistemology and philosophy of mind, offered to explain details of our 
sensory, emotional, and rational cognition. Kepler’s solution to the question of 
knowledge acquisition is an epistemology rooted in geometry, manifested in his 
explanations of harmonic perception and, in particular, in his theory of musical 
consonance. Yet it is especially important to note that his theory of consonance 
is not merely an incidental example among many. Rather, it serves as a paradig-
matic example of archetypal harmony precisely because its explanation of conso-
nance so neatly mirrors the construction of the archetypal harmonies in the soul:

‘[The complete circle and an aliquot part or parts of it] is the specific dis-
tinguishing feature of harmonic proportion… by which…the pure and 
archetypal harmony [is differentiated from] the sensible ones, except in-
sofar as in the familiar common usage only the congruity of sounds is 
called harmony’ (GW vi 216/ADF 295).

Altogether, Kepler’s music theory provides an especially important case study 
for understanding central elements of his epistemology and philosophy of 
mind. However, his reasons for accepting a geometrical theory of consonance 
do not stop here. While internal coherence was a significant motivating factor 
for Kepler’s work, he was not so enamored with this feature of his theoretical 
system that he would ignore strong evidence against any part of it.34 In the next 
section, I argue broader considerations also supported Kepler’s preference for a 
geometrical theory of consonance—and that the success of his theory on these 
grounds, in turn, lends support for his theoretical convictions in epistemology 
and philosophy of mind.

5. Extra-Theoretical Motivations for a Geometrical Theory of 
Consonance

In this section, I discuss some general considerations that made Kepler’s geo-
metrical theory of consonance preferable to other accounts available to him. 

34. Numerous instances show Kepler rejecting candidate accounts of natural phenomena for 
lack of sufficient empirical support, even if they better aligned with his prior commitments. For 
example, his insistence on elliptical (rather than circular) orbits in astronomy ran counter to his 
predisposition toward the circle. See Brackenridge (1982) for a detailed discussion of this point.
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In order to do this, I compare his theory with two other dominant kinds of 
theories of the time, mentioned briefly in Section 2: numerical theories and 
coincidence theory. I will show how, in Kepler’s view, his theory outperforms 
these alternatives based on the following broadly accepted desiderata for a 
theory of consonance: first, the theory should provide necessary and suffi-
cient conditions for consonance—that is, it ought to predict all and only the 
consonant intervals; second, the theory should account for certain perceptual 
features of consonance, including the marked perceptual difference between 
the class of consonant intervals and the class of dissonant ones, as well as the 
particularly “intellectual” pleasure that characterizes the experience of musi-
cal consonance.

Before proceeding, I will outline the relevant elements of the theories under 
consideration. Numerical theories were most prevalent in the centuries leading 
up to Kepler’s Harmonices Mundi, so I begin with these. As noted, these theo-
ries attribute a special significance to the numbers found in the musical ratios. 
One of the oldest and most famous numerical theories, attributed to Pythago-
ras, holds that the cause of consonance resides in the Tetractys, a numerical con-
struct culminating in the number ten, the sum of the first four natural numbers. 
Kepler describes the Tetractys as “the perennial fountain by which the Pythago-
reans swore” and provides his own interpretation, followed by those of Joachim 
Camerarius and Hermes Trismegistus (GW vi: 95/ADF: 133). Two main points 
emerge from Kepler’s discussion of the Tetractys. First is the metaphysical sig-
nificance accorded to the numbers in question. For instance, in his quotation 
of Camerarius, the number ten is described as “containing and accomplishing, 
or completing, the embellishment of the entire universe” (GW vi: 97–98/ADF: 
136). The significance of the numbers one through four, which add up to ten, is 
explained as follows:

‘The progression of Unity is as follows. One is the world. The Twofold 
signifies the first multiple contained in it. The Threefold signifies the 
bond or knot, necessary for the linking together of things… The Fourfold 
is the number which marks out and enumerates the elements… Now 
their sum is the tenfold, of which we have been speaking all along. For 
this is the apparel of completeness, this is its dowry, with which its mak-
er endowed it’ (GW vi: 98/ADF: 136).

According to the Pythagorean view, the first four natural numbers carry deep 
metaphysical privilege, each mapping onto some fundamental feature of the 
universe, with their sum, ten, unifying them.

Second, the Tetractys applies to the consonances. Kepler writes:
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‘And just as there are four numbers, the same number, that is, as there 
were Unities in the Fourfold, so also on account of them four kinds of 
harmonies exist: that between 1 and 2, the Diapason, like that between 2 
and 4, and that between 1 and 4, the Disdiapason, which are equivalent 
to unison; that between 1 and 3, the Diapason Epidiapente… the second; 
the third, that between 2 and 3, the diapente; and the fourth, that between 
3 and 4, the Diatessaron’ (GW vi: 96/ADF: 133–134).

As Kepler notes, the Pythagorean account asserts that the consonant class con-
sists of the fundamental consonant intervals of the octave (2:1), the perfect fifth 
(3:2), and the perfect fourth (4:3), along with the compound consonances of an 
octave plus a fifth (3:1) and the double octave (4:1). The numbers constituting 
these proportions belong to the Tetractys, whose metaphysical and epistemolog-
ical privilege supposedly explains why these intervals are similarly privileged. 
Since only these intervals have the numbers of the Tetractys in their ratios, only 
they are consonant, and their pleasant character derives from the soul’s recogni-
tion of these special numbers.

Later Medieval treatises on music tend to follow the Pythagorean model. 
For instance, one of the most widely read sources for the Pythagorean account 
of consonance is Boethius’ De Institutione Musica. Boethius recounts the story 
of Pythagoras noticing pleasing harmonies in a blacksmith’s shop and realiz-
ing that the hammers, when struck, produced notes in the traditional harmonic 
proportions.35 Boethius includes the same Pythagorean consonances in his col-
lection, which, as noted, are entirely composed of numbers in the Tetractys. He 
writes, “and so the measure of consonances comes to a halt: it can neither be 
extended beyond the quadruple nor reduced to less than a third part” (Boethius, 
De institutione musica, II.18 in Bower 1989: 73). He does not independently explain 
why this collection stops here; he simply cites Pythagorean authorities. The rest 
of his discussion is devoted to elaborating Pythagorean number theory and clas-
sifying the ratios according to relationships between their terms.36

35. This story became widespread but ultimately cannot be true, as Bower notes: when solid 
bodies of different weights are struck, the weight ratios producing musical intervals do not cor-
respond to the traditional harmonic proportions (Boethius, De institutione musica, I.10, in Bower 
1989: 20).

36. Boethius explains that the consonant ratios are multiples or superparticulars. For mul-
tiples, “the larger number contains the whole smaller number within itself twice, three times, or 
four times, and so forth; nothing is either lacking or superfluous” (Boethius, De institutione musica, 
I.4, in Bower 1989: 13). For superparticulars, “the larger number contains within itself the whole 
smaller number plus some single part of it: either a half, as three to two (and this is called the 
‘sesquialter’ ratio), or a third, as four to three (and this is called the ‘sesquitertian’)” (ibid). These 
relations are privileged due to their simplicity and the extent to which they preserve the nature of 
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What is important for us to note is that, whether in Pythagoras or his medi-
eval successors, numerical theories rely on the supposed privilege of certain 
numbers to do the explanatory work. Numerous variations of these theories 
arose throughout the Middle Ages and the Renaissance. Among the better-
known sixteenth-century theories is Gioseffo Zarlino’s in his Le Istitutioni Har-
moniche. Zarlino explains consonance by appealing to what he called the Senario, 
or the number six and the positive integers preceding it. He considers the num-
ber six privileged in virtue of being the first “perfect number,” meaning it equals 
the sum of its proper factors. All the consonant intervals—with the notable (and 
notoriously vexing) exception of the minor sixth (8:5)—have ratios whose terms 
appear in the Senario, meaning that the “perfection” of this numerical construct 
can account for the pleasant character of the majority of consonant intervals 
(Zarlino, Istitutioni Harmoniche: 23, translated in Corwin 2009: 269–271).

While each theory chooses different special numbers, the Senario’s explana-
tory work is similar to the Pythagorean Tetractys. As in the Pythagorean account, 
Zarlino’s “perfect” numbers are also metaphysically privileged and appear in 
various manifestations throughout the universe,37 thus explaining their presence 
in the consonant ratios and our perception of the consonant intervals as pleas-
ant. While the special number(s) in question can differ from theory to theory, the 
explanatory mechanism between them remains the same.

By contrast, coincidence theory focuses on the physical makeup of the pitches 
that form consonant intervals. Although numerical theories were more popular 
in the centuries leading up to Kepler’s Harmonices Mundi, coincidence theory 
began to take shape around his time and gained prominence later in the sev-
enteenth century. It can be found in the work of Descartes, Mersenne, Galileo, 
and Hobbes, to name just a few.38 Even though official statements of this theory 

the numbers involved. In multiples, the smallest number is entirely contained within the larger, 
and in superparticulars, the smallest number plus some simple part of itself is contained within 
the larger.

37. For the various manifestations of the Senario, see Zarlino, Istitutioni Harmoniche: 23–24 
(translated in Corwin 2009: 275–282). 

38. We will see more detailed evidence of Mersenne’s stance below. As for others: Descartes 
provides a version of this view in his L’Homme, where he writes “…These small vibrations com-
pose the sound, which the soul will judge to be sweeter or harsher according to whether they are 
more equal or unequal between them… Several sounds combined together will be consonant or 
dissonant depending on whether… the intervals between the small vibrations that compose them 
are more equal or unequal” (AT XI: 150, translation mine). Galileo gives a concise statement of 
the view in his Two New Sciences: “…The length of strings is not the direct and immediate reason 
behind the ratios of musical intervals, nor is their tension, nor their thickness, but rather, the ratios 
of the numbers of vibrations and impacts of air waves that go to strike our eardrum” (Galileo, Two 
New Sciences, in Drake 1989: 104). Finally, we see a similar statement in Hobbes’ De Corpore: “As 
for the concent [consonance] of sounds, it is to be considered that the reciprocation or vibration 
of the air, by which sound is made, after it hath reached the drum of the ear, imprinteth a like 
vibration upon the air that is inclosed within it; by which means the sides of the drum within are 
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largely appeared after the publication of the Harmonices Mundi, it is clear Kepler 
was aware of it as an option.39 Marin Mersenne provides a concise expression of 
coincidence theory in his Harmonie Universelle:

‘Sound is no other thing than the percussion of air, which the ear appre-
hends when it is affected…
All the simple consonances are understood and explained by the first six 
numbers (1, 2, 3, 4, 5, and 6) …
They represent the number and comparison of their percussions… The 
octave is the sweetest of all, after the unison, because its percussions are 
unified together more frequently…’ (Mersenne, Harmonie Universelle, 
Part I, “Abstract of Music Theory,” translation mine).40

As Mersenne indicates, consonance is explained by comparing the rates of per-
cussion of the air that compose each pitch; intervals whose percussions “unify 
together more frequently” or “line up” are deemed consonant. The ratios of 
the musical intervals reflect this frequency of coincidence: the octave (2:1) has 
a high rate of coincidence because the percussion of the lower pitch coincides 
with every other percussion of the higher pitch. A perfect fifth (3:2) coincides 
less frequently and is thus relatively less consonant. While different proponents 

stricken alternately. Now the concent of two sounds consists in this, that the tympanum receives 
its sounding stroke from both the sounding bodies in equal and equally frequent spaces of time; 
so that when two strings make their vibrations in the same times, the concent they produce is the 
most exquisite of all other” (EW 499–500). It is worth noting that Descartes’ account of coinci-
dence theory underwent significant revisions over the course of his career. For a more detail, see 
Romagni (2022).

39. Kepler was certainly aware of this view, as evidenced in Chapter 1 of Book III, where 
he asks, “Will not the fact that two strings have the same speeds as each other have the power to 
titillate the hearing pleasantly, on account of the fact that in a way it is moved uniformly by both 
strings, and that two beats from two sounds or vibrations cooperate in the same impulsion?” (GW 
vi:106–107/ADF: 149). I take this as an acknowledgement of coincidence theory, since he cites two 
strings causing a pleasing sensation in hearing by the “uniformity” of their vibrations on the ear. 
This, on my reading, clearly echoes the descriptions by coincidence theorists. Kepler’s reasons 
for rejecting the view are discussed in more detail below. Shortly after the passage quoted above, 
he indicates that he comes across this view in Porphyry’s commentary on Ptolemy’s Harmonics, 
though he does not further specify. It is likely that he is referring to the text where Porphyry quotes 
at length from a treatise attributed to Aristotle called De audibilibus. As Barker (2015: 225–249) 
notes, scholars agree that the text was not written by Aristotle but disagree as to who the author 
might be. On the prevalence of the view and other possible sources for Kepler’s acquaintance with 
coincidence theory, see Barbieri (2001).

40. While it is important to note that Kepler himself could not have read the Harmonie Univer-
selle, I cite Mersenne as a source for coincidence theory in this section because, out of the theorists 
in this period who subscribed to it, Mersenne dedicated by far the most time and energy to devel-
oping it. Thus, the Harmonie Universelle provides the most thorough exposition of coincidence 
theory from this period.



20 • Domenica Romagni

Journal of Modern Philosophy • vol. 7 • 2025

of coincidence theory offer variations on the details, they all appeal to the physi-
cal make-up of the pitches in the intervals to explain consonance. In particular, 
they all tie the rate of coincidence between the physical percussions that make 
up each pitch in the interval to that pitch’s consonance relative to other intervals.

Now that we have a clearer understanding of Kepler’s alternatives, we can 
look at the general considerations that led him to accept his geometrical theory. 
I should note that I am not claiming that these are the only or even the stron-
gest reasons for Kepler’s preference. As discussed above, his broader theoreti-
cal commitments played a key role in shaping what kind of theory he would 
deem acceptable. However, it is important to recognize motivations for Kepler’s 
account of consonance not directly tied to his theoretical commitments for two 
main reasons. First, they help us understand why Kepler might have preferred 
a theory that seems, at least prima facie, highly idiosyncratic and overly com-
plex. Recognizing motivations outside of his system show that Kepler’s theory 
of consonance is more than a mere consequence of his other, possibly puz-
zling, theoretical commitments. Second, understanding the general motiva-
tions behind his geometrical theory of consonance can shed light on why he 
held some of his broader theoretical commitments in the first place. Kepler’s 
metaphysical and epistemological framework is often seen as mysterious and 
somewhat opaque. Recognizing the extra-theoretical motivations for his geo-
metrical theory of consonance helps explain how it reinforced his views about 
the role of geometry in metaphysics and epistemology more generally. In other 
words, while internal consistency was a significant point in its favor, if Kepler’s 
geometrical account of consonance was also motivated by factors independent 
of his theoretical system, then this account can be seen as further justification 
for certain the aspects of that system.41

The strongest case that Kepler offers for preferring his geometrical account 
is that it seemed to him alone to provide necessary and sufficient conditions for 
determining which intervals and their ratios are consonant. He makes this clear, 
writing:

‘For these reasons, then… I have set myself the task of illuminating this 
part of Mathematics and Physics, by discovering causes which on the 
one hand would satisfy the judgement of the ears… but which on the 

41. Of course, it should be made clear that Kepler was committed to the role of geometry in 
metaphysics and epistemology long before he delivered his geometrical account of consonance, as 
emphasized above. This commitment is evidenced as far back as the Mysterium Cosmographicum, 
where he first published his polyhedral hypothesis. Thus, I do not claim that the details of 
his geometrical account of consonance served as the initial basis for this commitment; rather, 
I suggest that the success of his geometrical approach, combined with Kepler’s existing empha-
sis on harmony, provided significant evidence in favor of his geometrical metaphysics and 
epistemology in his mature thought.
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other hand would set up a clear and overt criterion between the numbers 
which form musical intervals and those which have nothing to do with 
the matter…’ (GW vi: 100/ADF: 139).

Here, Kepler points out that his theory must provide a clear criterion for captur-
ing all consonant intervals while excluding all others, and that this criterion must 
be confirmed empirically. This requirement is not unique to Kepler. Other theo-
rists of the period also insisted that any theory of consonance ought to provide a 
clear criterion for identifying consonant intervals and distinguishing them from 
dissonant ones. For instance, in his Harmonie Universelle, Mersenne titles one of 
his propositions “Why there are only seven or eight simple consonances,” call-
ing this question “one of the greatest difficulties in music” (Mersenne, Harmonie 
Universelle, First Book of Consonances, pp. 82, translation mine).

We have already seen that Kepler believed that he provided such conditions: 
a ratio is consonant if and only if it is produced by the divisions of a circle made 
by an inscribed figure with a proper construction and is not ruled out by a figure 
without a proper construction. Let us compare this with how the other theories 
fare in this regard. Starting with the numerical theories, the Pythagorean account 
includes only the octave (2:1), the perfect fifth (3:2), and the perfect fourth (4:3) as 
consonant, as well as the octave duplicate of the fifth (3:1) and the double octave 
(4:1). It explains their consonance by grounding their ratios in the Tetractys, or 
the first four natural numbers summing to ten. Now, if we accept only this set of 
intervals, then the theory does yield a clear condition for consonance: an interval 
is consonant if and only if its ratio includes the numbers of the Tetractys. How-
ever, as noted earlier, Kepler and many of his contemporaries accepted a larger 
class of consonant intervals because they believed empirical evidence confirmed 
that the major and minor thirds and sixths are consonant too.42 In his criticism of 
this account, Kepler writes:

‘… For the Pythagoreans were so much given over to this form of phi-
losophizing through numbers that they did not even stand by the judg-
ment of their ears… but they marked out what was melodic and what 
was unmelodic, what was consonant and what was dissonant, from their 
numbers alone, doing violence to the natural prompting of hearing’ (GW 
vi: 99/ADF: 137).

Thus, even though the Pythagorean account might yield necessary and sufficient 
conditions for its restricted set of intervals, Kepler deems it inadequate due to its 
inability to align with empirical evidence.

42. For discussion of Kepler’s commitment to capturing all the consonances of just intonation, 
see Walker (1967): 229–235.
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One may wonder if Zarlino’s Senario fares any better. According to Kepler, 
one advantage of Zarlino’s account is that it includes thirds and sixths as con-
sonances. However, Zarlino still faces criticisms similar to those Kepler levels 
at the Pythagorean theory. In particular, Kepler rejects any theory grounded 
in abstract numbers. Of course, here we are concerned with motivations that 
aren’t specific to Kepler’s own philosophical views and, specifically, whether 
the Senario provides satisfactory necessary and sufficient conditions for conso-
nance. As the reader will recall, the Senario captures the numbers of most—but 
not all—consonant intervals under just intonation. The notable exception is the 
minor sixth (8:5). Zarlino attempts to account for this by classifying consonances 
as “perfect” and “imperfect.” The “perfect” consonances are the octave, fifth, 
fourth, and the major and minor thirds. By contrast, the sixths are “imperfect” 
because (1) they are superpartient (i.e., their larger term exceeds the smaller by 
more than one) and (2) they derive from the primary “perfect” consonances. 
The major sixth arises from combining the perfect fourth with a major third; the 
minor sixth arises from the perfect fourth plus a minor third (Zarlino, Istitutioni 
Harmoniche: 27–28, translated in Corwin 2009: 291–300).

With this addition, Zarlino’s version of numerical theory seems to accommo-
date the minor sixth. However, one wonders if he has given us true conditions 
for consonance. If the minor sixth is considered consonant simply because “per-
fect” consonant intervals can combine to form “imperfect” consonances, then 
the possibility arises that certain dissonances might also count as consonant. For 
instance, as Cohen notes, combining a perfect fifth and a major third results in a 
major seventh, which is decidedly dissonant (Cohen 1984: 6). Zarlino attempts 
to impose further restrictions on which intervals can be “compound,” but these 
restrictions are specific to each interval in question rather than part of a general 
rule. For instance, in the case of the minor sixth, Zarlino points out that 8 and 
5 contain a medial harmonic term, 6, which divides it into its composite con-
sonances. However, this solution does not extend to his discussion of the com-
pound consonance of the double octave (4:1), which is ruled consonant because 
it can be subdivided into two intervals in geometric proportion (Zarlino, Isti-
tutioni Harmoniche: 27–28, translated in Corwin 2009: 296–298). Thus, Zarlino’s 
account fails to provide a general rule or set of rules for determining the condi-
tions of consonance.43

Coincidence theory seems to fail on this criterion as well, primarily because it 
provides only a relative rule for consonance: given a particular interval, another 
interval is more consonant if the percussions of its pitches coincide more fre-

43. Cohen notes that Kepler also must go to great lengths to rule out dissonances, which 
puts a strain on his theory (Cohen 1984: 18–23). However, had Kepler been right there being no 
constructible polygons with a prime number of sides greater than five, his rule would have held 
generally in a way that Zarlino’s criteria do not.
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quently. It offers no criterion for determining whether an interval is consonant 
simpliciter. Although Mersenne mentions the number six in his summary of the 
theory, he is clear throughout his work that no number—six or any other—can 
form the sole basis for identifying intervals as consonances. For instance, when 
considering the possibility that there may be only seven consonances because 
seven represents rest, he writes, “[this reason] is very weak, since we produce 
many things in nature, in the sciences, and in the arts that meet the number 
seven, as much as we find many things in the same nature and sciences, that sur-
pass the number seven” (Mersenne, Harmonie Universelle, First Book of Conso-
nances, 82, translation mine). This remark sheds light on why Mersenne calls the 
problem of why there are only seven or eight consonances one of the “greatest 
difficulties in music”: coincidence theory simply provides no absolute standard 
for which intervals count as consonant and thus cannot fix the size of that class.

This brings us to a related consideration that may have prompted Kepler’s 
choice of theory: the clear difference in how consonant intervals are perceived 
compared to dissonant ones. While we might think of slight gradations in con-
sonance (of pleasantness, sweetness, etc.) within the class of consonant intervals, 
there is a more pronounced or fundamental difference between any consonant 
interval and any dissonant internal. This is why consonance and dissonance were 
generally considered in this period as different categories, rather than poles on a 
single spectrum. By giving precise conditions for which intervals will be conso-
nant, Kepler also provides an explanation for why consonance and dissonance 
appear as distinct kinds of properties. This clear distinction, in his view, results 
from the fact that consonant intervals owe their pleasantness to the intelligibility 
of constructible polygons, whereas dissonant intervals owe their unpleasantness 
to the unintelligibility of polygons lacking proper construction.

This consideration is primarily relevant for rejecting coincidence theory, 
which does not explain the perceived kind difference between consonance and 
dissonance. Rather, it frames intervals only in more-or-less consonant terms. In 
fact, Mersenne states this fairly explicitly:

‘We infer from this discussion that we can establish more than seven con-
sonances if we take for consonances those intervals that are less harsh 
and less disagreeable than many others; for the interval of 7:6 is more 
agreeable than the tone, and the tone is more agreeable than the semi-
tone and consequently likewise according to the greater or lesser union 
of their sounds’ (Mersenne, Harmonie Universelle, First Book of Conso-
nances, 88, translation mine).

While such a continuum might seem unproblematic to us today, in Kepler’s time 
it was far more common to treat consonance and dissonance as mutually exclu-
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sive monadic properties, rather than relational properties. In other words, con-
sonance and dissonance were treated as a pair of properties much like “square” 
and “round,” which can be attributed to a subject without requiring a relation or 
comparison, like “tall” or “short.”44

This brings us to the final general reason for Kepler’s preference for a geo-
metrical account. Like the sharp distinction between consonance and dissonance, 
this next consideration pertains largely to rejecting coincidence theory. As noted 
above, Kepler was aware that sound could be composed of physical motions, so 
one might wonder why this is not central to his theory. He addresses anyone 
proposing that consonance’s pleasantness resides in the nature of the physical 
stimulus in Chapter 1 of Book III:

‘…Will not the fact that two strings have the same speeds as each other 
have the power to titillate the hearing pleasantly, on account of the fact 
that in a way it is moved uniformly by both strings…? It is vain… to dis-
pose of this matter so easily… For what… is the proportion of titillation 
of the hearing, a corporeal thing, to that unbelievable pleasure, which 
we feel totally within the mind from harmonic consonances? Surely if 
any pleasure does come from the titillation, the chief participant in that 
pleasure is the organ which undergoes the titillation… Yet in fact in the 
hearing of consonant notes or sounds, what parts of the pleasure… are 
attached to the ears? … Add the fact that this explanation deduced from 
the motion applies particularly to unison, whereas it is not unison which 
is especially pleasurable, but other consonances, and their combination’ 
(GW vi: 106–107/ADF: 149).

Kepler raises two objections to coincidence theory here. First, if consonance’s 
pleasantness were determined merely by how the sense organ is affected by 
motion, its phenomenology would differ signficantly. In particular, the pleasant-
ness of consonance and the unpleasantness of dissonance would be experienced 
more directly as affections of the organ—much like a loud noise that hurts the 
ears or a bright light that hurts the eyes. Yet Kepler contends that consonance 
is not experienced in this way. Rather, it is a mental or intellectual pleasure felt 
“totally within the mind.” To account for this phenomenological character, we 
must look beyond the stimulus’s effect on the sensory organ and look to the 
mind. Then, we see that “[it] is Mind or the human intellect by the judgement 

44. Cohen makes this point, noting its connection to musical practice at the time. He also 
speculates that the strict divide between consonance and dissonance eroded as musical practice 
changed (Cohen 1984: 33–34). However, the fact remains that this strict divide was still in place in 
Kepler’s time, and even Mersenne was disturbed by the inability of coincidence theory to account 
for it.
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or instinct of which the sense of hearing discriminates pleasant, that is conso-
nant, proportions from the unpleasant and dissonant…” (GW vi: 107/ADF: 150). 
Hence, the intellectual pleasure that characterizes consonance must result from 
rational appreciation of proportion.

Moreover, Kepler notes that coincidence theory implies that the unison (the 
interval formed by two identical pitches) should be the most pleasing or conso-
nant interval. He thinks, however, that this is not the case. Rather, the available 
evidence suggests we prefer other consonances, such as the octave, the perfect 
fifth, or major thirds. And it turns out that Kepler’s prediction is correct. Mer-
senne holds that the unison is the primary and most agreeable of the conso-
nances, writing:

‘I say first that it is without a doubt that [the unison] is sweeter [than the 
octave], and that it unites its sounds more often and more easily, since 
the unison is of 1:1, all the percussions of the air unify at each stroke, 
rather than the percussions of the octave only unite twice in two strokes 
and we always find that in the operations of all the senses that that which 
unites more easily is the sweeter… I say so secondly that it seems that the 
unison is more agreeable than the octave because it tickles the ears more 
and that it is understood more easily by the imagination, which is the 
principal seat of pleasure’ (Mersenne, Harmonie Universelle, First Book of 
Consonances, 11, translation mine).

While Mersenne seems to have no problem asserting that the unison is the 
sweetest and most agreeable of the consonances, Kepler believes that this is not 
confirmed by our experience and is thus another reason to reject coincidence 
theory.45

In this section we have seen why Kepler might have preferred his geometri-
cal theory regardless of one’s stance on his views in philosophy of mathemat-
ics, metaphysics, or epistemology. First, Kepler’s theory uniquely provides clear, 
necessary, and sufficient conditions for consonance. Second, only Kepler’s the-
ory accounts for the marked distinction between consonance and dissonance 
that coincidence theory notably fails to explain. If numerical theories had man-
aged to generate satisfactory conditions for consonance, they too could explain 
this distinction, but Kepler had reasons to doubt that they did. Finally, Kepler 
believed that his theory better explained the phenomenological character of con-

45. This issue was not unique to Kepler. There were numerous debates surrounding the 
status of the unison and whether it should be considered an interval at all—let alone a conso-
nance—and Mersenne was aware of them. In fact, Mersenne’s Harmonie Universelle, First Book 
of Consonances (Propositions II–VII, 5–34), devotes an extensive discussion to the unison as an 
interval and as a consonance.
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sonance, which he saw as an intellectual rather than sensory phenomenon. While 
numerical theories might have fulfilled this criterion had they also yielded sat-
isfactory conditions for consonance, they failed to do so. Coincidence theory, by 
contrast, accounts for the pleasure of consonance by focusing on how the physi-
cal stimulus affects the sense organ, which Kepler finds insufficient to account 
for the intellectual pleasure we derive from musical consonance. In addition, it 
predicts that the unison should be the most pleasing consonance—an assertion 
contested by numerous theorists at the time, including Kepler.

6. Conclusion

Where does this leave us? First, while Kepler’s theory of musical consonance 
might seem obscure, I have shown that he had several good reasons for offer-
ing it. Unsurprisingly, many of these reasons relate to other theoretical commit-
ments he held. However, we have also seen that Kepler’s choice was influenced 
by motivations not directly tied to his philosophical framework —and that these 
motivations were recognized by his contemporaries as well. This perspective 
helps us appreciate how Kepler’s theory of consonance fits into his philosophi-
cal project as a whole, while also seeing it as more than a mere byproduct of his 
other commitments. First, it shows how the details of his music theory serve as 
an especially important example of his geometrical epistemology. Moreover, it 
shows how the explanatory power of his theory of consonance—especially in 
comparison to other alternatives—can be understood as further support for his 
geometrical epistemology and its application in his scientific method.

We saw in Section 2 that Kepler explicitly recognizes the need for clear condi-
tions governing knowledge acquisition and confirmation. In characteristic Keple-
rian fashion, these conditions are defined in terms of geometry: knowable objects 
are those that can be measured by an appropriate geometrical standard, and the 
process of coming to know them is achieved through geometrical construction. 
Kepler then extends this theory of knowability to other domains by connecting 
it with his philosophy of mind. According to his theory, the circle exists in the 
soul as an archetype and enables us to apprehend sensible harmonies that obtain 
among natural objects. Kepler’s theory of musical consonance corresponds to 
this process exactly: the perception of consonant intervals matches the construc-
tion of geometrical archetypal harmonies. Although other kinds of harmony are 
perceived through these archetypes, none aligns as directly as the consonant 
intervals. Given that one of Kepler’s main aims was to identify harmony in the 
universe and its source, the near-perfect application of his geometrical episte-
mology to music theory is an important achievement.
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In addition to this, the way his geometrical theory provides clear conditions 
for consonance and accounts for empirical details in its phenomenology pro-
vided further support for his broader metaphysical and epistemological views. 
Namely, the fact that his explanation of consonance—rooted in the relationship 
between the circumference and diameter of the circle—successfully delivered on 
these desiderata indicated to Kepler that he was on the right track with his sci-
entific program. Indeed, it would have been seen as especially strong evidence, 
given Kepler’s conviction that harmony is an inherent principle of the universe. 
It is no wonder, then, that he expresses such exuberance about the success of 
his project in the Harmonices Mundi. That work famously presents his third law 
of planetary motion, as well as his final discovery of harmonic proportions in 
the orbits of the planets. Yet the apparent success of Kepler’s theory of musical 
consonance, and its reinforcement of his geometrically grounded philosophy, 
may have constituted an equally (or even more) significant triumph in his eyes. 
Understanding how Kepler’s music theory fits into this broader program thus 
helps us appreciate why this seemingly obscure treatise was his “mind’s favor-
ite child.”46
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